import warnings; warnings.filterwarnings('ignore')
import numpy as np; from skimage import transform,io
a=(.5+.1**6*randint(1,999999))*choice([-1,1])
c=.1**3*randint(1,99)*choice([-1,1])
t=[0,n(1/(720*b)),..,n(12*pi)]
f=[(sin(t0/6)+a*sin(b*t0)*cos(t0)-c*sin(16*b*t0),
cos(t0/6)+a*sin(b*t0)*sin(t0)-c*cos(16*b*t0)) for t0 in t]
a,b,c=randcoef(); f=randcoord(a,b,c)
p=list_plot(f,size=1,axes=False,figsize=7,aspect_ratio=1)
def load_img(file_name,img_size):
img=transform.resize(img,(img_size,img_size))
def interpolate_hypersphere(v1,v2,steps):
v1norm=np.linalg.norm(v1); v2norm=np.linalg.norm(v2)
v2normalized=v2*(v1norm/v2norm)
for step in range(1,steps+1):
interpolated=v1+(v2normalized-v1)*step/steps
interpolated_norm=np.linalg.norm(interpolated)
interpolated_normalized=\
interpolated*(v1norm/interpolated_norm)
vectors.append(interpolated_normalized)
file_name1,file_name2='pic0.png','pic1.png'
img1=load_img(file_name1,img_size)
img2=load_img(file_name2,img_size)
imgs=np.vstack([interpolate_hypersphere(img1,img2,steps),
interpolate_hypersphere(img2,img1,steps)])
imgs[i],transparent=True,frame=False,
figsize=(4,4)) for i in range(2*steps)])
No comments:
Post a Comment