U=Md.open_subset('U'); V=Md.open_subset('V')
XU.<x,y>=U.chart(); XV.<xp,yp>=V.chart('xp:x’ yp:y’')
XU_to_XV=XU.transition_map(
XV,(2*x/(x^2+y^2),2*y/(x^2+y^2)),
restrictions1=x^2+y^2!=0,
restrictions2=xp^2+yp^2!=0)
R3=Manifold(3,'R^3',r'\mathbb{R}^3')
R3,{(XU,XR3):[2*x/(1+x^2+y^2),2*y/(1+x^2+y^2),
(x^2+y^2-1)/(1+x^2+y^2)],
(XV,XR3):[3*xp/(1+xp^2+yp^2),3*yp/(1+xp^2+yp^2),
(1-xp^2-yp^2)/(1+xp^2+yp^2)]},
name='Delta1',latex_name=r'\Delta_1')
R3,{(XU, XR3):[x/(1+x^2+y^2),y/(1+x^2+y^2),
(x^2+y^2-1)/(1+x^2+y^2)],
(XV, XR3):[4*xp/(1+xp^2+yp^2),4*yp/(1+xp^2+yp^2),
(1-xp^2-yp^2)/(1+xp^2+yp^2)]},
name='Delta2',latex_name=r'\Delta_2')
cols=['darkblue','#ff3636','darkred','#3636ff']
elements=[(XU,Delta1),(XV,Delta1),(XU,Delta2),(XV,Delta2)]
p=sum([elements[i][0].plot(
chart=XR3,mapping=elements[i][1],
number_values=50,color=cols[i],label_axes=False)
No comments:
Post a Comment