X=[[[67/5,pi/2,0],[-14/5,11/7,-10],[2942/7,16/5,1],
[43/5,39/10,2],[123/4,3/7,3],[10,3/5,4],
[39/4,15/4,5],[44/7,49/12,6],[7/2,1,7],
[29/7,8/7,8],[5/4,23/6,9]]+6*[[0,0,0]],
[[-4019/4,pi/2,0],[-22/5,4/3,-8],[1841/6,19/7,1],
[357/4,23/11,2],[106/3,4,3],[351/14,1/14,4],
[127/8,22/7,5],[36/5,33/7,6],[91/18,22/9,7],
[23/6,1/5,9],[17/6,9/2,10]]+6*[[0,0,0]],
[[1198/3,pi/2,0],[-61/15,8/9,-8],[-51/5,4/3,-6],
[1453/4,14/5,1],[614/7,13/6,2],[75/2,13/3,3],
[122/5,1/16,4],[175/11,13/4,5],[19/4,9/5,7],
[5,1/2,9],[13/7,4,10]]+6*[[0,0,0]],
[[-13027/13,pi/2,0],[-14/3,2/5,-6],[-29/5,5/9,-5],
[-37/4,1/3,-4],[3021/7,97/32,1],[179/9,34/11,2],
[53/5,29/10,3],[1/2,18/5,7],[11/6,16/7,8],
[11/5,7/3,9],[5/6,11/5,10]]+6*[[0,0,0]],
[[785/2,pi/2,0],[-3/5,1/6,-10],[-23/7,2/7,-6],
[-23/3,1/8,-5],[-10,1/5,-4],[2417/5,34/11,1],
[89/4,16/5,2],[11/5,14/5,3],[31/16,17/6,7],
[20/7,23/8,8],[17/7,11/4,9]]+6*[[0,0,0]],
[[-1087/5,pi/2,0],[-2,4/3,-16],[-39/11,6/5,-14],
[-21/4,14/9,-12],[-41/3,3/2,-6],
[5028/5,23/12,1],[713/14,17/5,2],[103/3,7/3,3],
[258/7,13/3,4],[142/13,1,5],[179/15,9/7,7],
[17/3,13/3,8],[47/6,5/3,9],[90/13,22/5,10],
[18/5,13/7,11],[18/5,7/5,13],[26/7,7/4,15]],
[[-277/3,pi/2,0],[8875/6,28/9,1]]+15*[[0,0,0]],
[[-467/5,pi/2,0],[4832/3,31/10,1]]+15*[[0,0,0]]]
Y=[[[-6393/7,pi/2,0],[-1/3,4/3,-10],[-21/22,3/5,-9],
[-4,7/5,-5],[-21/4,1/4,-4],[4217/17,9/2,1],
[74/3,15/7,2],[32/3,11/7,3],[7/4,16/5,6],
[2,13/6,7],[4/5,2/3,8]]+6*[[0,0,0]],
[[4843/9,pi/2,0],[-209/6,1/5,-4],[-249/8,6/5,-3],
[577/2,40/9,1],[184/3,9/4,2],[83/7,2/3,5],
[25/3,12/5,6],[5,17/6,7],[5/3,1/7,8],[23/6,1/4,9],
[5/4,5/4,10]]+6*[[0,0,0]],
[[5301/10,pi/2,0],[-131/4,4/5,-3],[1781/6,9/2,1],
[422/7,9/4,2],[189/5,1/16,4],[79/6,8/5,5],
[34/3,26/9,6],[22/5,23/7,7],[35/12,2/7,8],
[11/4,5/7,9],[14/5,10/3,10]]+6*[[0,0,0]],
[[2127/4,pi/2,0],[401,23/5,1],[118/3,7/5,2],
[68/3,6/5,3],[133/8,6/5,4],[11/3,4/3,5],
[24/7,57/14,6],[34/7,45/11,7],[25/7,37/9,8],
[1/3,19/5,9],[9/5,3/5,10]]+6*[[0,0,0]],
[[3688/7,pi/2,0],[13121/32,14/3,1],[44,10/7,2],
[123/4,7/5,3],[15,4/3,4],[3/4,12/5,5],
[27/5,13/3,6],[40/7,31/7,7],[13/6,13/3,8],
[6/5,6/5,9],[58/19,1,10]]+6*[[0,0,0]],
[[-9879/19,pi/2,0],[-19/7,8/7,-12],[-103/5,7/8,-5],
[-80/9,11/7,-4],[3665/6,18/5,1],
[803/6,13/5,2],[441/8,9/2,3],[17/2,4/5,6],
[27/5,1/3,7],[17/3,2,8],[9/5,24/7,9],
[15/4,26/7,10],[13/5,41/9,11],[16/17,1/5,13],
[23/11,1/4,14],[7/4,25/12,15],[2/3,9/7,16]],
[[1105/12,pi/2,0],[5913/4,14/3,1]]+15*[[0,0,0]],
[[359/4,pi/2,0],[8012/5,14/3,1]]+15*[[0,0,0]]]
def bf(k,t): return k[0]*sin(k[1]+k[2]*t)
return unit_step((31-4*j)*pi-t)*unit_step((-27+4*j)*pi+t)
def gus(t): return unit_step(sign(sin(t/2)))
x(t)=gus(t)*sum([sum([bf(X[j][i],t) for i in range(17)])*\
us(j,t) for j in range(8)])
y(t)=gus(t)*sum([sum([bf(Y[j][i],t) for i in range(17)])*\
us(j,t) for j in range(8)])
[parametric_plot((x(t),y(t)),(t,.1^5+2*pi*i,(2-.1^5)*pi+2*pi*i),
fill=True,fillalpha=.2,fillcolor='orange',
color='darkorange') for i in range(16)])
p.axes_color('silver'); p.tick_label_color('silver')
p.show(gridlines=True,figsize=6)
def _(a=(.9,.1,-.05),b=(.9,.1,-.05),c=(.9,.1,-.05)):
[bf(X[j][i],t) for i in range(17)])*\
us(j,t) for j in range(8)])
[K[j]*bf(Y[j][i],t) for i in range(17)])*\
us(j,t) for j in range(8)])
p=Graphics()+parametric_plot(
(x(t),y(t)),(t,.1,32*pi-.1),
exclude=[2*pi*k for k in range(16)],
fillcolor='bisque',color='crimson')
p.axes_color('silver'); p.tick_label_color('silver')
p.show(gridlines=True,figsize=7)
No comments:
Post a Comment