xxxxxxxxxx
import numpy,pylab,time
from sklearn import manifold,datasets
X,y=datasets.load_digits(return_X_y=True)
tsne=manifold.TSNE(n_components=2,learning_rate=800.,init="random")
t0=time.time(); X_emb=tsne.fit_transform(X)
t=time.time()-t0
x_min,x_max=numpy.min(X_emb,0),numpy.max(X_emb,0)
X_emb=(X_emb-x_min)/(x_max-x_min)
f,ax=pylab.subplots(1,figsize=(6,6))
for i in range(X_emb.shape[0]):
pylab.text(X_emb[i,0],X_emb[i,1],str(y[i]),
color=pylab.cm.hsv(.1*y[i]))
pylab.title("t-SNE embedding %f s"%t)
pylab.axis("off"); pylab.show()
No comments:
Post a Comment