import sympy; sympy.init_printing(use_unicode=True)
from sage.symbolic.integration.integral import indefinite_integral
from sage.symbolic.integration.integral import definite_integral
var('chi'); Y={1:ln(cos(2*chi))/2,2:exp(chi)+3,3:chi^2/4-0.5}
X1={1:0,2:ln(8)/2,3:1}; X2={1:pi/12,2:ln(15)/2,3:2}
L=definite_integral((1+diff(Y[N],chi)^2)^0.5,chi,X1[N],X2[N])
s1=r'<left><font>$\displaystyle{y=%s; \; FL=%s}$</font></left>'
s2=r'<left><font>$\displaystyle{L=%s=%s}$</font></left>'
II=indefinite_integral((1+diff(Y[N],chi)^2)^0.5,chi)
pretty_print(html(s1%(latex(Y[N]),latex(II))))
pretty_print(html(s2%(latex(L),str(L.n()))))
M=r'$\mathbb{\alpha}$'; X=[x for x in srange(X1[N],X2[N],.01)]
YN=[Y[N](chi=x) for x in X]
t=sum([text(M,(x,y),fontsize=12,rgbcolor=Color('#3636ff'))
for (x,y) in list(zip(X,YN))])
animate([t+text(M,(x,y),fontsize=14,rgbcolor=Color('#3636ff'))
for (x,y) in list(zip(X,YN))]).show()
x=sympy.Symbol('x'); y={1:ln(cos(2*x))/2,2:exp(x)+3,3:x^2/4-.5}
L=sympy.Integral(((1+diff(y[N],x)^2)^.5).expand(),(x,X1[N],X2[N]))
print('\nL = '); display(L); print('= '+str(L.n()))
No comments:
Post a Comment