import pandas as pd,pylab as pl
pl.style.use('dark_background')
from sklearn import datasets
wine=datasets.load_wine()
from sklearn.ensemble import \
AdaBoostClassifier,GradientBoostingClassifier
classifiers=[AdaBoostClassifier,GradientBoostingClassifier]
X,y=wine.data,wine.target
df_importance=pd.DataFrame(columns=range(13))
classifiers[i]().fit(X,y).feature_importances_
pl.plot(df_importance.loc[i],'-v',
label=str(classifiers[i]()),
markersize=7,markerfacecolor='None',
pl.legend(loc=9,bbox_to_anchor=(.5,1.17),fontsize=12)
pl.grid(color='slategray'); pl.show()
No comments:
Post a Comment