from sklearn import datasets,model_selection,\
linear_model,pipeline,neural_network,metrics
digits=datasets.load_digits()
X,y=digits.data,digits.target
X_train,X_test,y_train,y_test=\
model_selection.train_test_split(
X,y,test_size=.2,random_state=1)
(X_train-np.min(X_train,0))/(np.max(X_train,0)+.1^4)
(X_test-np.min(X_test,0))/(np.max(X_test,0)+.1^4)
logistic=linear_model.LogisticRegression(
max_iter=50,solver='liblinear',multi_class='ovr')
brbm=neural_network.BernoulliRBM(
random_state=0,verbose=False)
brbm.learning_rate,brbm.n_iter,brbm.n_components=.05,50,96
nn_clf=pipeline.Pipeline(steps=[('brbm',brbm),
nn_clf.fit(X_train_scaled,y_train)
print('Logistic regression using BRBM features:\n%s\n'%\
(metrics.classification_report(
y_test,nn_clf.predict(X_test_scaled))))
No comments:
Post a Comment